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1 Introduction

Over recent years the AdS/CFT correspondence has served as a useful holographic tool

to explore features of dual relativistic field theories at strong coupling. From its concep-

tion as a novel observation, it has gradually gained acceptance as a computational tool

and has allowed some important qualitative insights into nuclear physics at RHIC exper-

iments. Natural evolution then leads to application of the AdS/CFT to model conformal

field theories which appear in table-top laboratory experiments. Although the microscopic

description of these condensed matter systems is not relativistic, there are special quantum

critical points which exhibit the full relativistic conformal symmetry. In these special cases,

the AdS/CMT allows one to study strongly correlated electrons, superconductors, and the

quantum hall effect.

One may then ask whether holography has a rôle to play in the understanding of non-

relativistic theories away from the special critical points. Such systems are invariant under

Galilean transformations {H,P}, spatial rotations M , Galilean boosts K and they also

possess a manifest scale invariance D. If one considers x+ to be the time coordinate and

x to denote the d spatial coordinates, the scaling symmetry acts as

x+ → λzx+, x → λx, (1.1)

where z denotes the dynamical exponent. The algebra of these symmetries, referred to as

the Schrödinger algebra in d spatial dimensions Sch(d), is embeddable in the relativistic

conformal algebra in d+2 spacetime dimensions O(d+2, 2), implying that the holographic
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dual is a d + 3 dimensional spacetime. Here z = 1 corresponds to a relativistic the-

ory. For applications of theories with different values of z which describe the onset of

(anti)ferromagnetism, etc. in strongly coupled fermion systems in the lab, see [1]. See [2]

for a comprehensive review for the string community. For a flavour of the recent activities

being pursued on both sides of the duality, see [5].

Over the past year, a steady trickle of papers on NR CFT holography have appeared.

This paper adds a small contribution to the understanding of the string/M-theory gravity

duals of these NR CFTs, the study of which was precipitated by [3, 4], when the Schrödinger

symmetries were realised geometrically. These d = 2 z = 2 solutions were subsequently

embedded into type IIB string theory [6–8], and featured spactimes with internal Sasaki-

Einstein manifolds SE5. A generalisation of these IIB SE5 solutions appeared in [9] where

the introduction of a harmonic function on SE5 into the external part of the metric allows

an interpolating solution that tunes between a solution with two supersymmetries and

the IIB solutions above. In [7] and [10] it was shown how solutions can be obtained as

consistent truncations on SE5 from type IIB and SE7 from d = 11 supergravity to lower-

dimensional theories with massive vector fields. In an extension of the latter work [11] it

was shown that although the z = 2 solutions [6–8] were non-supersymmetric, among the

type IIB solutions [7] with z ≥ 4 and the d = 11 supergravity solutions [10] with z ≥ 3,

there are solutions preserving two supersymmetries.

In this note, as a starting point, we make use of the explicit family of supersymmetric

warped AdS5 solutions in d = 11 supergravity appearing in [12]. When M6 is a complex

manifold, explicit solutions were found which are topologically a two-sphere fibred over a

four-dimensional base B4 which is either Kähler-Einstein KE4 or a product of constant

curvature Riemann surfaces. Among these products, the S2 ×T 2 product reduces to a IIB

solution with internal SE5. Here we will consider an external part of the d = 11 metric

loyal to the isometries of Sch(2), while maintaining the original symmetries of the explicit

M6 solutions.

The structure of this paper is as follows. In section 2 we review the symmetries of

the Schrödinger group with general dynamical exponent z and explain how they manifest

themselves in the metric and the fluxes. In section 3 we analyse the Sch(2) z = 2 dual

with base space B = S2 × S2 to determine the nature of the most general solution. This

case is compact and when the size of the two spheres are equal, it is KE4, so it exhibits

overlap with some of the other explicit solutions. In section 4, we proceed to the uplifted

Y p,q solutions with B = S2 ×T 2. Much is already known about these solutions. In section

5 we conclude.

2 Preliminaries

The class of warped AdS5×wM6 solutions we consider in this paper were initially analysed

in [12] and some of the properties of the N = 1 SCFT duals were examined in [14]. We

briefly recap the essential points. The d = 11 metric is

ds2 = e2λ[ds2(AdS5) + ds2(M6)], (2.1)

– 2 –
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where λ is a function of the coordinates on M6 and the four-form flux G is purely magnetic

with components only on the M6 space.

For the special case where M6 admits an integrable almost complex structure and is

hence complex, explicit solutions were constructed in [12]. For the explicit solutions

ds2(M6) = ds2(B4) + e−6λ sec2 ζ +
cos2 ζ

9
(dψ + P ), (2.2)

where the Killing vector ∂ψ is related to the R-symmetry of the dual SCFT and P denotes

the canonical one-form connection on the base B4. Topologically these solutions are S2

bundles over a four-dimensional base which is eitherKE4 or a product of constant curvature

Riemann surfaces C1 ×C2, where the curvature of Ci, ki ∈ {−1, 0, 1} determines whether Ci
is a hyperbolic space H2, a flat torus T 2 or a sphere S2 respectively.

As the scope of this note is the candidate geometric duals to non-relativistic CFTs in

d = 3, we will consider the above class of solutions but replace AdS5 with the following

metric

ds2 = r2
(

−2dx+dx− − f(M6)r
2z−2(dx+)2 − rz−2Cdx+ + dx2

)

+
dr2

r2
. (2.3)

where z is the dynamical exponent of the NR CFT. This metric captures all the symmetries

of the Schrödinger symmetry group for z 6= 1, with z = 1, f(M6) = C = 0 being the

standard metric on AdS5. Here f(M6) is a function of the M6 coordinates - from the

external space perspective it is simply a scalar. We also demand that C is a one-form

invariant under the isometries of M6, by requiring that LζC = 0, where ζ is an M6 Killing

vector. This metric combines some of the features considered in [9, 11] for providing NR

CFT duals from known AdS solutions.

Given a metric gµν , the Killing vectors ζ may be determined from the solutions of

Lζgµν = ζρ∂ρgµν + gρν∂µζ
ρ + gµρ∂νζ

ρ. (2.4)

For the above metric the Killing vectors are

∂i , ∂+ , ∂− , x2∂1 − x1∂2 , xi∂− − x+∂i,

zx+∂+ + xi∂i + (2 − z)x−∂− + r∂r. (2.5)

When the symmetry group is enlarged to Schrödinger symmetry, there is an extra Killing

vector

− (x+)2∂+ − 1

2

(

1

r2
+ (xi)2

)

∂− − x+xi∂i + x+r∂r. (2.6)

In total these generators lead to isometries with the following infinitesimal form

P i : δxi = ai, H : δx+ = a, M : δx− = a, M12 : δxi = aǫij x
j ,

Ki : δxi = −aix+, δx− = aixi, (2.7)

D : δxi = axi, δr = ar, δx+ = zax+, δx− = (2 − z)ax−,

C : δxi = −ax+xi, δr = +ax+r, δx+ = −a(x+)2, δx− = −a
2

(

1

r2
+ (xi)2

)

.

– 3 –



J
H
E
P
0
9
(
2
0
0
9
)
0
0
2

The non-trivial commutators of these generators are given by

[

M12, P i
]

= i(δ1iP 2 − δ2iP 1),
[

M12,Ki
]

= i(δ1iK2 − δ2iK1),
[

D,Ki
]

= i(1 − z)Ki,
[

D,P i
]

= −iP i, (2.8)

[D,H] = −ziH,
[

P i,Kj
]

= −iδijM,

with the additional commutators for z = 2

[D,M ] = i(2 − z)M, [D,C] = 2iC, , [H,C] = iD. (2.9)

In terms of the generators of SO(4, 2) conformal group P̃µ, K̃µ, M̃µν and D̃ in light-cone

coordinates, these may be expressed as

P i = P̃ i, M12 = M̃12, M = P̃+, H = P̃−, (2.10)

Ki = M̃ i+, D = D̃ + M̃+−, C =
K̃+

2
. (2.11)

Having presented the form of the metric for general z, we now wish to consider the

candidate forms for the four-form field strength. Given the original magnetic field strength

G0 [12], we can imagine adding electric flux F ≡ F+abcdx
+abc,1 so that the total flux is

G = G0 + F. (2.12)

As there are many potential candidates for F , one approach to whittle down the options is

to ask that F =
∑n=4

n=1A
(n)∧B(4−n), where A and B are forms on the external and internal

space respectively, which are invariant under the respective Killing vectors of these spaces.

As the Killing vectors on the internal and external space commute with each other, one

may consider the invariant forms separately. As the explicit solutions on M6 depend on the

nature of the four-dimensional base space B4, we postpone treatment of them until later.

For the external metric, once the Killing vectors ζ are determined, we consider the

various n-forms A(n) satisfying

LζA(n)
a1...an

= 0. (2.13)

The metric (2.3) preserves the following forms

c1r
zdx+ + c2r

−1dr, rz−1dx+r, rz+2dx+12, c3r
z+1dx+r12 + c4r

4dx+−12, (2.14)

where ci denote arbitrary constants. Note due to the different exponents of r present, it is

not possible for any of these terms to mix with each other under the symmetry group. For

z = 2, the surviving forms after special conformal symmetry is introduced are

r2dx+, rdx+r, r4dx+12, r3dx+r12. (2.15)

Having sketched the general scenario, we devote the rest of the paper to the analysis of

the z = 2 duals. The more general case may be tackled later. In this note, we focus on

1
dx

a1..an ≡ dx
a1 ∧ dx

a2 ∧ · · · ∧ dx
an

– 4 –
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solutions to Einstein’s equation and the flux equations in d = 11. Given our ansatz, only

when C = 0 and the fluxes are purely magnetic G = G0 can we preserve two supersym-

metries. Following the same spinor decompositon as [12], ǫ = ψ ⊗ eλ/2ξ, it can be shown

that imposing ρ+ψ = 0 kills all superconformal supersymmetry while preserving just two

Poincaré supersymmetries.

Coupled with studies of NR CFT duals there has been some work done on consistent

truncations [7, 10]. In passing, we mention that a consistent reduction to d = 5 minimal

gauged supergravity of these solutions which appeared in [14], does not allow a deformation

preserving Schrödinger symmetry. A consistent reduction from the AdS5 ×w M6 solutions

in d = 11 to d = 5 gauged supergravity allowing massive vector fields is expected to exist.

3 B4 = S
2 × S

2

As mentioned in the introduction, the AdS5 ×w M6 solutions where M6 is complex, have

either KE4 bases or product bases comprised of Riemann surfaces. When one of the

Riemann surfaces are T 2, one can reduce to type IIA/IIB, whereas the other explicit

supersymmetric solutions in the family are purely M-theoretic in nature. In this section

we focus on the case B4 = S2 ×S2. In general the volumes of the two spheres are different,

but when the volumes are the same, we get the KE4 base S2 × S2. As the structure of

the explicit solutions is more or less the same, we feel that it is sufficient to focus on this

particular case. The case S2 × T 2 which admits a d = 10 description we consider in the

next section.

In general for C1 × C2, the six-dimensional metric takes the form

ds2(M6) =

2
∑

i=1

1

3
e−6λ(ai − kiy

2)ds2(Ci) + e−6λ sec2 ζdy2 +
1

9
cos2 ζDψ2, (3.1)

where ds2(Ci) denote the metric on S2 or H2, with the curvatures ki taking the appropriate

values k = +1 or k = −1 accordingly. Here Dψ ≡ dψ + P with 0 ≤ ψ ≤ 2π and

dP = vol1 + vol2. The original magnetic four-form flux is

G0 = g1vol1vol2 + g2vol1dyDψ + g3vol2dyDψ, (3.2)

where voli denotes the volume form on the product spaces. The explicit forms of

e6λ, cos2 ζ, gi, which are all functions of y depending on constants ai, ki and c, may be

found in [12].

From here on, we restrict ourselves to the c = 0 case of S2 × S2 (k1 = k2 = 1). When

c = 0, y is bounded above and below by the zeroes of cos2 ζ

y2 ≤ 1

2
√

3

√

3a2
1 + 3a2

2 + 10a1a2 −
a1 + a2

2
. (3.3)

In addition to the original magentic flux (3.2), we consider the flux

F = f1(y)r
3dxr+12 − f ′1(y)

4
r4dx+12y + f2(y)rdx

r+yDψ + f3(y)rdx
r+vol1 (3.4)

+f4(y)rdx
r+vol2 +

1

2
[f2(y) − f3(y)

′]r2dx+yvol1 +
1

2
[f2(y) − f4(y)

′]r2dx+yvol2,

– 5 –
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which is constructed from forms invariant under the desired internal and external symme-

tries. It is also by construction closed dF = 0, so that the Bianchi is satisfied.

In tandum with these fluxes, we consider the invariant one-form C to be of the form

C ≡ Cy(y)dy + Cψ(y)Dψ, (3.5)

thus exhausting the permitted invariant one-forms on the original M6.

We now turn to the flux equations of motion. Ensuring that the equation of motion is

satisfied leads to five equations where both r and Cy drop out: (A.1), (A.2), (A.3), (A.4)

and (A.5). To avoid clutter we reproduce these and subsequent equations of motion in the

appendix.

We stress again that any solution of d = 11 supergravity necessitates that these be

solved along with Einstein equation if a solution is to exist. Note, not all of the above

are independent: taking the derivative of (A.1), while making use of (A.2) and (A.3), plus

g′1 = g2 + g3, (from Bianchi, see (3.2)) we find (A.4).

We now proceed step by step. We take f(M6) to be just a function of y for simplicity

f(M6) ≡ f(y). This has the upshot that none of the internal isometries are spoiled.

From the equations of motion, it is clear that Cψ can only appear when flux fi terms are

switched on.

Bearing in mind that the original background [12] satisfies Einstein equations EAB = 0,

the introduction of f(y), Cψ and fluxes fi make some components non-zero. When Cψ, and

fi are zero, g++ ∼ f(y) and one may simply determine f(y) by solving E++ = 0. The

result for a1 = a2 = 1 is

f = α1y + α2

(

−3y tan−1

[

1

3

√

9 + 6
√

3(−3 + 2
√

3)y

]

+(45y
√

3 + 78y) tanh−1

[

1

3

√

9 + 6
√

3
√

3y

]

− 4

√

9 + 6
√

3(2 +
√

3)

)

, (3.6)

where αi are integration constants. What is important to note, is that f changes sign as y

approaches the bound (3.3). This means that in principal it is susceptible to instabilities

which we address in the appendix.

However, when one attempts to have non-zero fi but Cψ = 0, it is satisfying to see that

no solution exists. In addition to the four-independent flux equations, Einstein imposes

f2 =
1

2
(f ′3 + f ′4), (3.7)

and either f3 = f4 or a1 = a2 is imposed. The combination of (A.2) and (A.3) then

demand that both f3 = f4 and a1 = a2 with the remaining equations only being satisfied

if all fi = 0.

In general when Cψ 6= 0, after considerable numerical work for a1 6= a2, one can

show by expanding in terms of power series that given our ansatz, the only supergravity

preserving Schrödinger symmetry and the internal symmetry of M6 has trivial electric field

strengths fi = 0.

Finally, we remark that when a1 = a2, the base becomes KE4, so we do not expect

there to be any solutions with KE4 base when Cψ and fi are non-zero.

– 6 –
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4 B4 = S
2 × T

2: Sasaki-Einstein

We next consider the family of solutions in [12] with B4 = S2 × T 2. By dimensional

reduction and T-duality, these solutions are related to type IIB solutions with Sasaki-

Einstein five-manifolds AdS5 × S5 [15]. The NRCFT duals of these solutions have already

been discussed in [6–9], so in this section we hope to provide the d = 11 angle on the story.

The metric is given by

ds2(M6) = e−6λds2(T 2) +
1 − cy

6
ds2(S2) + e−6λ sec2 ζdy2 +

1

9
cos2 ζDψ2, (4.1)

where (x3, x4) parametrise our torus and (θ, φ) a unit radius two-sphere.

As before ψ has period 2π and this time Dψ ≡ dψ + P with dP = vol(S2). Here

a ∈ (0, 1) and without loss of generality, we may take c = 1. The roots of cos2 ζ define a

range for y: y1 ≤ y ≤ y2. The parameter a may be fixed in terms of two relatively prime

integers p > q > 0 [15],

a =
1

2
+

3q2 − p2

4p3

√

4p2 − 3q2. (4.2)

In terms of these integers the roots are

y1 =
1

4p
(2p − 3q −

√

4p2 − 3q2),

y2 =
1

4p
(2p + 3q −

√

4p2 − 3q2). (4.3)

The original four-form flux is

G = g1dx
34vol(S2) + g2vol(S

2)dyDψ + g3dx
34yDψ, (4.4)

where the explict forms of e6λ, cos2 ζ, gi are recoverable in [12].

Proceeding as in the previous section, the most general electric flux satisfying the

Bianchi and being invariant under the isometries is

F = f1(y)r
3dxr+12 − f1(y)

′

4
r4dx+12y + f2(y)rdx

r+34 + f3(y)rdx
r+V ol(S2)

+f4(y)rdx
r+yDψ + f5(y)rdx

r+3Dψ + f6(y)rdx
r+4Dψ − f2(y)

′

2
r2dx+34y

+
1

2
[f4(y) − f3(y)

′]r2dx+yV ol(S2) +
f5(y)

2
r2dx+3V ol(S2) +

f5(y)
′

2
r2dx+3yDψ

+
f6(y)

2
r2dx+4V ol(S2) +

f6(y)
′

2
r2dx+4yDψ, (4.5)

with the resulting equations of motion again appearing in the appendix.

Again using the Bianchi g′1 = g3, one can show that the derivative of (A.6) with (A.8)

means that (A.9) is trivially satisfied. Also f5 and f6 decouple from the rest of the other fi
and from each other, though they are the same up to a change in sign. We proceed parallel

to the last section.

– 7 –
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In the absence of one-form C ≡ CψDψ+C3dx
3 +C4dx

4, and the fi, one can solve for

f(M6) ≡ f(y). The solution is

f(y) = α1y + α2y

[

− 1

ay
− 1

a

∑

roots

(3 − 2yi) ln(y − yi)

6yi(1 − yi)

]

, (4.6)

with αi being integration constants. Here the latter part is not real over the range of y,

so α2 is necessarily zero. This leaves f(y) ∼ y, and as y changes sign, so does f(y). The

stability of the dimensionally reduced IIB solution was treated in [9], where it was shown

that the solution is unstable provided the fluxes fi are sufficiently small fi. The same

conclusion may be applied here also.

The first indication that something special has happened when the S2 of the last

section is replaced by T 2, is the decoupling of f5 and f6. These should correspond to the

type IIB solutions presented in [6–9], which were largely the result of TsT transformations.

Here TsT refers to the process of T-dualising on an internal U(1), say ψ, shifting along

x−, x− → x− + σψ, then T-dualising back along ψ.

We uplift these solutions in appendix C and they act as a consistency check for our flux

equations of motion. In terms of our fi, these solutions take the form of one of the following,

f5 = −2σ1 cos2 ζ

3
, C4 = 2σ1y, or f6 = −2σ2 cos2 ζ

3
, C3 = −2σ2y, (4.7)

depending on which cycle of the torus T 2 one uplifts on. One can then complete the

solution by solving the E++ = 0 component for f(y). In contrast to IIB, in the M-theory

setting, we can have both terms simultaneously as they decouple from each other.

Bearing in mind that the Killing vector ∂ψ of the AdS5 ×w M6 solutions is a linear

combination of the type IIB Reeb vector ∂ψ′ with a torus one-cycle, say x3, ∂ψ = ∂ψ′ + ∂3,

when one reduces to IIA and performs a TsT on ∂ψ, one recovers the same flux above,

but with a different value of C3. In fact for f6 = σ cos2 ζ, one can integrate (A.11). The

solution is

C3 = 3σ
(a− y)

(1 − y)
+ c

(a− y2)

(1 − y)
, (4.8)

for arbitrary constant c. This is also a solution to Einstein’s equation. This highlights the

freedom presented when one performs the TsT transformation, as one can choose a linear

combination of the two U(1)’s from type IIB or IIA. For example, (4.7) corresponds to the

case c = 2 when σ is properly rescaled.

Also possible, is the reduction to type IIA and the TsT using x− and x3. In this case

the solution becomes

f1 = −4σ, f2 = 2σe−6λ, Cψ = −3σ

2

−2y + y2 + a

a− 3y2 + 2y3
, . (4.9)

Away from the solutions which may be generated in such a fashion, one may tackle

Einstein’s equation and flux equations head on by assuming that all the fi’s are analytic in

the interval (4.3) and may be expanded in a power series in y. This admits solutions seeded

by four integral constants. From the form of the fluxes, these constants are related to the

– 8 –
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charges of M2 branes stretched along different two-cycles in the geometry. The general

solution can be presented as a power series, where the coefficients are determind by those

four integral constants. Unfortunately we were unable to find a neat expression for these

solution, so we merely document their existence.

5 Discussion

The subject of this work was M-theory solutions admitting d = 2 + 1 non-relativistic

conformal field theory duals. This necessitates a five-dimensional holographic dual. Our

starting point was the explicit AdS5×wM6 solutions presented in [12], before replacing the

external AdS5 space with a space with the reduced symmetries of the Schrödinger algebra.

In section 2, en route to constructing the candidate fluxes, we considered the most

general forms preserving the required symmetries. In section 3, we analysed the possibility

of solutions whereM6 has base space B4 = S2×S2. We found that the only supersymmetric

solution consists of adding g++ scalar function f(y) to the metric in the presence of the

original magnetic fluxes. As this family has overlap with B4 = KE4, we do not expect any

non-trivial flux solutions here either. Owing the the similar structure of the AdS5 ×wM6,

we also expect this result to hold for all products without a T 2 metric in the base.

In section 3, we replace one of the S2 with T 2 and reconsider the problem. The two

one-cycles of T 2 allow us to consider a more general flux ansatz, where x3 and x4 appear

separately in the candidate electric four-forms. In fact these extra flux terms decouple

from the other fluxes, and we are able to find a family of solutions. These appear in [6–9],

but here we can now add a second shifting parameter as we approach the problem directly

from d = 11 supergravity. These solutions also have a second clear U(1) appearing as a

candidate for TsT transformation, allowing yet another generalisation of solutions in [6–9].

In future, we would like to return to these backgrounds but focus more on su-

persymmetry and extend the search for solutions at different z, thus generating the

results on the Schrödinger symmetry appearing here. One way to pursue this, would

be investigating the possibility of consistent truncations on M6 from d = 11 to a d = 5

gauged supergravity theory with a massive vector field. This would extend some of the

work of [7, 10], which was performed for SE5 and SE7, where also lower bounds were

given for supersymmetric solutions.
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A Equations of motion

Here we house the constraints on the candidate flux terms fi arising from the equations

of motion.

– 9 –



J
H
E
P
0
9
(
2
0
0
9
)
0
0
2

S2 × S2. In this case the constraints are

f1g1 =
4

3e6λ
f2(a1 − k1y

2)(a2 − k2y
2) − 1

6
e6λ cos2 ζ

(a2 − k2y
2)

(a1 − k1y2)
[f2 − f ′3 + 2Cψg2]

−1

6
e6λ cos2 ζ

(a1 − k1y
2)

(a2 − k2y2)
[f2 − f ′4 + 2Cψg3], (A.1)

f1g2 =
4

3
f4

(a1 − k1y
2)

(a2 − k2y2)
− 1

6

[

e6λ cos2 ζ
(a1 − k1y

2)

(a2 − k2y2)
[f2 − f ′4 + 2Cψg3]

]′

, (A.2)

f1g3 =
4

3
f3

(a2 − k2y
2)

(a1 − k1y2)
− 1

6

[

e6λ cos2 ζ
(a2 − k2y

2)

(a1 − k1y2)
[f2 − f ′3 + 2Cψg2]

]′

, (A.3)

1

4
f ′1g1 =

[

f2

3e6λ
(a1 − k1y

2)(a2 − k2y
2)

]′

− 1

3
f3

(a2 − k2y
2)

(a1 − k1y2)
− 1

3
f4

(a1 − k1y
2)

(a2 − k2y2)
, (A.4)

0 = f2g1 + f3g3 + f4g2 −
2

27

f1

e12λ
(a1 − k1y

2)(a2 − k2y
2)

− 1

4(27)

[

f ′1 cos2 ζ

e6λ
(a1 − k1y

2)(a2 − k2y
2)

]′

, (A.5)

where dashes denote derivatives with respect to y.

S2 × T2. Here the equations of motion are

0 = f1g1 − 2f4(1 − y) + [f4 − f ′3 + 2g2Cψ]

(

cos2 ζ

1 − y

)

, (A.6)

0 = f1g2 −
2

9
f2e

6λ(1 − y) − 1

36

[

(f ′2 − 2g3Cψ) cos2 ζe12λ(1 − y)
]′

, (A.7)

0 = f1g3 −
8f3

(1 − y)e6λ
+

[

[f4 − f ′3 + 2g2Cψ)]

(

cos2 ζ

1 − y

)]′

, (A.8)

0 = −f
′
1g1

4
− 2f3

(1 − y)e6λ
+

1

2
[f4(1 − y)]′, (A.9)

0 = −2f5

(

1 − y

cos2 ζ

)

− 1

4
[(f ′5 + 2C4g3)e

6λ(1 − y)]′ +
f5 + 2C4g1

1 − y
, (A.10)

0 = 2f6

(

1 − y

cos2 ζ

)

+
1

4
[(f ′6 − 2C3g3)e

6λ(1 − y)]′ − f6 − 2C3g1

1 − y
, (A.11)

0 = f2g2 + f3g3 + f4g1 −
f1

9

1 − y

e6λ
− 1

72
[f ′1 cos2 ζ(1 − y)]′. (A.12)

B Stability analysis

We begin by assuming that the original AdS5×wM6 is stable and consider for simplicity the

variation in the external metric δgµν ≡ hµν , where h is traceless gµνhµν = 0 and transverse

d ⋆ h = 0. We ignore the tensor modes on the internal manifold as M6 is unaffected when

deforming to a Sch(2) geometry. Following discussions in [13], the first order change in

Ricci tensor under this perturbation is then given by the Lichnerowicz operator

δRab =
1

2
(∆Lh)ab,

(∆Lh)ab = 2Rcabdh
d
c +Rcah

c
b +Rcbh

c
a −∇c∇chab, (B.1)
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with the requirement that

δRab = −4hab. (B.2)

This property follows from the Ricci tensor of the original AdS5 solution Rab = −4gab.

Combining these, we get the equation

− hab −∇c∇chab = 0. (B.3)

Next we can expand the tensor mode in a parallel fashion to [9]

hab = h̃ab(r)Y (M6)e
−iωx++ik·x−iMx−, (B.4)

leading to the equations

[−∇2
M6

+M2f ]Y − λY = 0,
[

d2

d2r
+

5

r

d

dr
+

2Mω − k2

r4
− λ− 1

r2

]

h̃ab(r) = 0, (B.5)

where the negative contribution to the mass term comes from the lower bound on Lich-

nerowicz spectrum −2d for AdSd. At this point, we can then borrow the analysis presented

in [9] where it is concluded that large M will lead to negative λ, meaning that the energy

of the above system will not be bounded below. We conclude that this solution is unstable.

C Type IIB solution uplift

Here we begin with the IIB solution in [9] with B-field and uplift to M-theory.

Employing a shift, β = −6x3 − cψ [15], the metric may be re-written as in [12]

ds2 =

[

r2(−2dx+dx− − f(X5)r
2(dx+)2 + dx2) +

dr2

r2
+

1 − cy

6
(dθ2 + sin2 θdφ2)

+e−6λ sec2 ζdy2 +
cos2 ζ

9
Dψ2

+e6λ[dx3 +
−2y + y2c+ ac

6(a− y2)
Dψ]2

]

,

B2 = σr2dx+ ∧ 1

3
[(1 − cy)Dψ − 6ydx3],

F5 = 4(1 + ⋆)vol(X5). (C.1)

After T-duality [16] on x3, and subsequent uplifting to M-theory on x4, the final solution is

ds2 = e2λ
[

r2(−2dx+dx− − f(X5)r
2(dx+)2 + dx2) +

dr2

r2

+e−6λ(dx2
4 + [dx3 − 2yσr2dx+]2) +

1 − cy

6
ds2(S2) + e−6λ sec2 ζdy2 +

1

9
cos2Dψ2

]

,

A(3) =
−2y + y2c+ ca

6(a− y2)
dx3dx4Dψ − σr2 cos2 ζ

3
dx+dx4Dψ. (C.2)
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